
Wednesday, April 21, 2010
Mouse

Tuesday, April 20, 2010
RAM

Random-access memory usually known by its acronym, RAM is a form of computer data storage device. Today it can take the form of integrated circuits that allow stored data to be accessed in any order randomly. "Random" refers to the idea that any piece of data can be stored in any place and can be returned in a constant time, regardless of its physical location and whether or not it is related to the previous piece of data.
By contrast, storage devices such as magnetic discs and optical discs rely on the physical movement of the recording medium or a reading head. In these devices, the movement takes longer than data transfer, and the retrieval time varies based on the physical location of the next item.
The word RAM is often associated with volatile types of memory such as DRAM memory modules, where the information is lost after the power is switched off. Many other types of memory are RAM, too, including most types of ROM and a type of flash memory called NOR-Flash
Motherboard
Today most of the computer motherboards are designed for IBM-compatible computers, which are currently account for around 90% of global PC sales. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also connects the central processing unit and hosts other subsystems and devices.
A typical desktop computer has its microprocessor, main memory, and other essential components connected to the motherboard. Other components such as external storage devices, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripheral into the motherboard itself.
An important components of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard
RAMDAC
The RAMDAC, or Random Access Memory Digital-to-Analog Converter, converts digital signals to analog signals for use by a computer display that uses analog inputs such as CRT displays. The RAMDAC is a kind of RAM chip that regulates the functioning of the graphic card. Depending on the number of bits used and the RAMDAC-data-transfer rate, the converter will be able to support different computer-display refresh rates. With CRT displays, it is best to work over 75 Hz and never under 60 Hz, in order to minimize flicker. (With LCD displays, flicker is not a problem.) Due to the growing popularity of digital computer displays and the integration of the RAMDAC onto the GPU die, it has mostly disappeared as a discrete component. All current LCDs, plasma displays and TVs work in the digital domain and do not require a RAMDAC. There are few remaining legacy LCD and plasma displays that feature analog inputs (VGA, component, SCART etc.) only. These require a RAMDAC, but they reconvert the analog signal back to digital before they can display it, with the unavoidable loss of quality stemming from this digital-to-analog-to-digital conversion.
Monday, April 19, 2010
Power Consumption
Power consumption become increasingly important, not just in mobile devices such as laptops but also in server and desktop markets. Increasing data center machine density has led to problems delivering sufficient power to devices (especially for spin up), and getting rid of the waste heat subsequently produced, as well as environmental and electrical cost concerns. Similar issues exist for large companies with thousands of desktop PCs. Smaller form factor drives often use less power than larger drives. One interesting development in this area is actively controlling the seek speed so that the head arrives at its destination only just in time to read the sector, rather than arriving as quickly as possible and then having to wait for the sector to come around (i.e. the rotational latency). Many of the hard drive companies are now producing Green Drives that require much less power and cooling. Many of these 'Green Drives' spin slower (5,400 rpm compared to 7,200, 10,000 or 15,000 rpm) and also generate less waste heat.
Also in Server and Workstation systems where there might be multiple hard disk drives, there are various ways of controlling when the hard drives spin up (highest power draw).
On SCSI hard disk drives, the SCSI controller can directly control spin up and spin down of the drives.
On Parallel ATA (aka PATA) and SATA hard disk drives, some support power-up in standby or PUIS. The hard disk drive will not spin up until the controller or system BIOS issues a specific command to do so. This limits the power draw or consumption upon power on.
On newer SATA hard disk drives, there is Staggered Spin Up feature. The hard disk drive will not spin up until the SATA Phys comes ready (communications with the host controller starts).
To further control or reduce power draw and consumption, the hard disk drive can be spun down to reduce its power consumption.